“九蓮寶燈”的版本间的差异

来自最完整的日本麻將中文維基百科
跳转至: 导航搜索
第101行: 第101行:
 
! !! class="unsortable" |牌姿!!形!! class="unsortable" |听张!!听
 
! !! class="unsortable" |牌姿!!形!! class="unsortable" |听张!!听
 
|-
 
|-
|1-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}||{{display none|1b2/}} 嵌张
+
|1-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}||   嵌张
 
|-
 
|-
|1-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1a3/}} 边张
+
|1-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||   边张
 
|-
 
|-
|1-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {5m}{8m}||{{display none|4a4758/}}4 面张
+
|1-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {5m}{8m}||  4 面张
 
|-
 
|-
|1-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{5m}||{{display none|2c45/}} 变则2面张
+
|1-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{5m}||   变则2面张
 
|-
 
|-
|1-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||{{display none|2b36/}} 单纯両面
+
|1-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||   单纯両面
 
|-
 
|-
|1-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||{{display none|2c78/}} 变则2面张
+
|1-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||   变则2面张
 
|-
 
|-
|1-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {8m}||{{display none|3c478/}} 变则3面张
+
|1-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {8m}||   变则3面张
 
|-
 
|-
|1-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}||{{display none|3a369/}} 单纯3面张
+
|1-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}||   单纯3面张
 
|-
 
|-
|2-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m} {2m} {3m}||{{display none|3b123/}} 变则3面张
+
|2-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m} {2m} {3m}||   变则3面张
 
|-
 
|-
|2-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4 面张
+
|2-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||  4 面张
 
|-
 
|-
|2-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||{{display none|1b4/}} 嵌张
+
|2-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||   嵌张
 
|-
 
|-
|2-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||{{display none|3c253/}} 变则3面张
+
|2-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||   变则3面张
 
|-
 
|-
|2-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {2m}||{{display none|3c692/}} 变则3面张
+
|2-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {2m}||   变则3面张
 
|-
 
|-
|2-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|2-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||   嵌张
 
|-
 
|-
|2-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||{{display none|4b2583/}}4 面张
+
|2-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||  4 面张
 
|-
 
|-
|2-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{9m}||{{display none|2a29/}} 双碰
+
|2-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{9m}||   双碰
 
|-
 
|-
|3-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {2m}||{{display none|3c142/}} 变则3面张
+
|3-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {2m}||   变则3面张
 
|-
 
|-
|3-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4 面张
+
|3-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||  4 面张
 
|-
 
|-
|3-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||{{display none|1b4/}} 嵌张
+
|3-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||   嵌张
 
|-
 
|-
|3-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||{{display none|3c253/}} 变则3面张
+
|3-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||   变则3面张
 
|-
 
|-
|3-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||{{display none|4a1469/}}4 面张
+
|3-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||  4 面张
 
|-
 
|-
|3-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|3-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||   嵌张
 
|-
 
|-
|3-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||{{display none|4b2583/}}4 面张
+
|3-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||  4 面张
 
|-
 
|-
|3-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {9m}||{{display none|3c149/}} 变则3面张
+
|3-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {9m}||   变则3面张
 
|-
 
|-
|4-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {1m}||{{display none|4b3691/}}4 面张
+
|4-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {1m}||  4 面张
 
|-
 
|-
|4-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {4m}||{{display none|3c254/}} 变则3面张
+
|4-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {4m}||   变则3面张
 
|-
 
|-
|4-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|4-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||   嵌张
 
|-
 
|-
|4-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||{{display none|3c145/}} 变则3面张
+
|4-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||   变则3面张
 
|-
 
|-
|4-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||{{display none|2b36/}} 单纯両面
+
|4-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||   单纯両面
 
|-
 
|-
|4-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||{{display none|2c78/}} 变则2面张
+
|4-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||   变则2面张
 
|-
 
|-
|4-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4 面张
+
|4-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||  4 面张
 
|-
 
|-
|4-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}|| style="white-space:nowrap;" |{{display none|3a369/}} 单纯3面张
+
|4-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}|| style="white-space:nowrap;" |   单纯3面张
 
|-
 
|-
|5-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{5m}||{{display none|2a15/}} 双碰
+
|5-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{5m}||   双碰
 
|-
 
|-
| style="white-space:nowrap;" |5-2|| style="padding:10px 0px 0px; white-space:nowrap;" |{1m}{1m}{1m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="white-space:nowrap;" |2缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px; white-space:nowrap;" |{2m}{5m}{8m} {4m}{7m}||{{display none|5a25847/}}5 面张
+
| style="white-space:nowrap;" |5-2|| style="padding:10px 0px 0px; white-space:nowrap;" |{1m}{1m}{1m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="white-space:nowrap;" |2缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px; white-space:nowrap;" |{2m}{5m}{8m} {4m}{7m}||  5 面张
 
|-
 
|-
|5-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|5-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||   嵌张
 
|-
 
|-
|5-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||{{display none|3c145/}} 变则3面张
+
|5-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||   变则3面张
 
|-
 
|-
|5-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||{{display none|3c695/}} 变则3面张
+
|5-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||   变则3面张
 
|-
 
|-
|5-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|5-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||   嵌张
 
|-
 
|-
|5-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px;" |{2m}{5m}{8m} {3m}{6m}||{{display none|5a25836/}}5 面张
+
|5-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px;" |{2m}{5m}{8m} {3m}{6m}||  5 面张
 
|-
 
|-
|5-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{9m}||{{display none|2a59/}} 双碰
+
|5-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{9m}||   双碰
 
|-
 
|-
|6-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||{{display none|3a147/}} 单纯3面张
+
|6-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||   单纯3面张
 
|-
 
|-
|6-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4 面张
+
|6-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||  4 面张
 
|-
 
|-
|6-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||{{display none|2c23/}} 变则2面张
+
|6-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||   变则2面张
 
|-
 
|-
|6-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||{{display none|2b47/}} 单纯両面
+
|6-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||   单纯両面
 
|-
 
|-
|6-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||{{display none|3c695/}} 变则3面张
+
|6-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||   变则3面张
 
|-
 
|-
|6-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{8m}{9m}{9m}{9m}||7缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|6-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{8m}{9m}{9m}{9m}||7缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||   嵌张
 
|-
 
|-
|6-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{9m}{9m}{9m}||8缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {6m}||{{display none|3c586/}} 变则3面张
+
|6-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{9m}{9m}{9m}||8缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {6m}||   变则3面张
 
|-
 
|-
|6-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}||9缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {9m}||{{display none|4b1479/}}4 面张
+
|6-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}||9缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {9m}||  4 面张
 
|-
 
|-
|7-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||1缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {1m}||{{display none|3c691/}} 变则3面张
+
|7-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||1缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {1m}||   变则3面张
 
|-
 
|-
|7-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||2缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||{{display none|4b2587/}}4 面张
+
|7-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||2缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||  4 面张
 
|-
 
|-
|7-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||3缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|7-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||3缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||   嵌张
 
|-
 
|-
|7-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||4缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||{{display none|4a1469/}}4 面张
+
|7-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||4缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||  4 面张
 
|-
 
|-
|7-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||5缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||{{display none|3c587/}} 变则3面张
+
|7-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||5缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||   变则3面张
 
|-
 
|-
|7-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{7m}{8m}{9m}{9m}{9m}||6缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||{{display none|1b6/}} 嵌张
+
|7-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{7m}{8m}{9m}{9m}{9m}||6缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||   嵌张
 
|-
 
|-
|7-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{9m}{9m}{9m}||8缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4 面张
+
|7-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{9m}{9m}{9m}||8缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||  4 面张
 
|-
 
|-
|7-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}||9缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {8m}||{{display none|3c698/}} 变则3面张
+
|7-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}||9缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {8m}||   变则3面张
 
|-
 
|-
|8-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||1缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{8m}||{{display none|2a18/}} 双碰
+
|8-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||1缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{8m}||   双碰
 
|-
 
|-
|8-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||2缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||{{display none|4b2587/}}4 面张
+
|8-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||2缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||  4 面张
 
|-
 
|-
|8-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||3缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|8-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||3缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||   嵌张
 
|-
 
|-
|8-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||4缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {8m}||{{display none|3c148/}} 变则3面张
+
|8-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||4缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {8m}||   变则3面张
 
|-
 
|-
|8-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||5缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||{{display none|3c587/}} 变则3面张
+
|8-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||5缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||   变则3面张
 
|-
 
|-
|8-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{8m}{9m}{9m}{9m}||6缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||{{display none|1b6/}} 嵌张
+
|8-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{8m}{9m}{9m}{9m}||6缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||   嵌张
 
|-
 
|-
|8-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{8m}{9m}{9m}{9m}||7缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4 面张
+
|8-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{8m}{9m}{9m}{9m}||7缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||  4 面张
 
|-
 
|-
|8-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}||9缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m} {8m} {9m}||{{display none|3b789/}} 变则3面张
+
|8-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}||9缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m} {8m} {9m}||   变则3面张
 
|-
 
|-
|9-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||1缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||{{display none|3a147/}} 单纯3面张
+
|9-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||1缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||   单纯3面张
 
|-
 
|-
|9-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||2缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m} {2m}||{{display none|3c362/}} 变则3面张
+
|9-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||2缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m} {2m}||   变则3面张
 
|-
 
|-
|9-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||3缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||{{display none|2c23/}} 变则2面张
+
|9-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||3缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||   变则2面张
 
|-
 
|-
|9-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||4缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||{{display none|2b47/}} 单纯両面
+
|9-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||4缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||   单纯両面
 
|-
 
|-
|9-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||5缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{6m}||{{display none|2c56/}} 变则2面张
+
|9-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||5缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{6m}||   变则2面张
  
 
|-
 
|-
|9-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}{9m}||6缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}{6m}||{{display none|4a2536/}}4 面张
+
|9-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}{9m}||6缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}{6m}||  4 面张
 
|-
 
|-
|9-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}{9m}||7缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1a7/}} 边张
+
|9-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}{9m}||7缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||   边张
 
|-
 
|-
|9-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}{9m}||8缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{8m}||{{display none|1b8/}} 嵌张
+
|9-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}{9m}||8缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{8m}||   嵌张
 
|-
 
|-
 
|9-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="text-align:center;" |纯正九莲|| style="text-align:center;" |全部同色牌||9面张
 
|9-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="text-align:center;" |纯正九莲|| style="text-align:center;" |全部同色牌||9面张
 
|}
 
|}

2019年1月25日 (五) 03:00的版本

九莲宝灯,又称天衣无缝,简称九莲,役的一种,必须门前清,役满。由同一花色的含有1112345678999的和牌。

【例】{1123456788999p}荣和{1p}

概要

  • 九莲宝灯不能暗杠,暗杠后不计九莲宝灯。
  • 九莲宝灯非常难

纯正九莲宝灯

纯正九莲宝灯,简称纯九,指听牌时,手上是同一花色的1112345678999

【例】{1112345678999p}荣和{3p}

  • 纯正九莲宝灯有的规则当作二倍役满

九面听牌的牌理

纯正九莲宝灯的牌理如下所示。

 高目一通形

  
的三面听。

 单纯形

  
的三面听。

 高目一通形(左右反转)

  
的三面听。

以上这三个图,各自把牌分成三部分,是比较简单的分解方法,这三个图已经覆盖了 这些听牌。当然还有其他的分解方法,下面举出一些例子。如下所示,因为分割的地方不同,听牌的牌型显得复杂。这种方法只把牌分成两部分,下面按照顺序,U字形排列,同一行的两个分别是左右反转形。

 在1和2之间分割

  
听 。

 在8和9之间分割

  
听 。

 在2和3之间分割

 
听。

 在7和8之间分割

 
听。

 在3和4之间分割

 
听 。

 在6和7之间分割

 
听 。

 在4和5之间分割

 
听 。

 在5和6之间分割

 
听 。

这样,各种分割的方法,能把从1到9的听牌都覆盖到。

从数学的角度来看,不只是从1到9,0和10也能和九莲宝灯组成“四面子一雀头”的和牌形式。


73种听牌形式

九莲宝灯的听牌形式在牌理上来说有73种(考虑到万筒索3色,73的3倍一共219种,但这只是色的不同,数字的排列是一样的)。以下提供一览表。

凡例
  • 最左栏的“A-B”是“A多了一张,而没有B”的意思。
  • “形”一栏对应的是“没有B,A多了一张”的意思。
  • 默认按照“A-B”的顺序排列、点击“形”一栏的排列按钮,可以按照“B-A”的顺序排列。
  • 点击“形”一栏的排列按钮,会按“听B的九莲宝灯”的顺序排列。
  • 点击最左栏的分类按钮,会回到默认状态,即“没有A的听牌状态一览”。
  • 纯正九宝莲灯用“9-9”表示。
牌姿 听张
1-2 {1m}{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失1有余 {2m}  嵌张
1-3 {1m}{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失1有余 {3m}  边张
1-4 {1m}{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失1有余 {4m}{7m} {5m}{8m}  4面张
1-5 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失1有余 {4m}{5m}  变则2面张
1-6 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失1有余 {3m}{6m}  单纯両面
1-7 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失1有余 {7m}{8m}  变则2面张
1-8 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失1有余 {4m}{7m} {8m}  变则3面张
1-9 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失1有余 {3m}{6m}{9m}  单纯3面张
2-1 {1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失2有余 {1m} {2m} {3m}  变则3面张
2-3 {1m}{1m}{1m}{2m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失2有余 {3m}{6m}{9m} {2m}  4面张
2-4 {1m}{1m}{1m}{2m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失2有余 {4m}  嵌张
2-5 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失2有余 {2m}{5m} {3m}  变则3面张
2-6 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失2有余 {6m}{9m} {2m}  变则3面张
2-7 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失2有余 {7m}  嵌张
2-8 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失2有余 {2m}{5m}{8m} {3m}  4面张
2-9 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失2有余 {2m}{9m}  双碰
3-1 {1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失3有余 {1m}{4m} {2m}  变则3面张
3-2 {1m}{1m}{1m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失3有余 {3m}{6m}{9m} {2m}  4面张
3-4 {1m}{1m}{1m}{2m}{3m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失3有余 {4m}  嵌张
3-5 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失3有余 {2m}{5m} {3m}  变则3面张
3-6 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失3有余 {1m}{4m} {6m}{9m}  4面张
3-7 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失3有余 {7m}  嵌张
3-8 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失3有余 {2m}{5m}{8m} {3m}  4面张
3-9 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失3有余 {1m}{4m} {9m}  变则3面张
4-1 {1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失4有余 {3m}{6m}{9m} {1m}  4面张
4-2 {1m}{1m}{1m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失4有余 {2m}{5m} {4m}  变则3面张
4-3 {1m}{1m}{1m}{2m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失4有余 {3m}  嵌张
4-5 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失4有余 {1m}{4m} {5m}  变则3面张
4-6 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失4有余 {3m}{6m}  单纯両面
4-7 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失4有余 {7m}{8m}  变则2面张
4-8 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失4有余 {1m}{4m}{7m} {8m}  4面张
4-9 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失4有余 {3m}{6m}{9m}  单纯3面张
5-1 {1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失5有余 {1m}{5m}  双碰
5-2 {1m}{1m}{1m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失5有余 {2m}{5m}{8m} {4m}{7m}  5面张
5-3 {1m}{1m}{1m}{2m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失5有余 {3m}  嵌张
5-4 {1m}{1m}{1m}{2m}{3m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失5有余 {1m}{4m} {5m}  变则3面张
5-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失5有余 {6m}{9m} {5m}  变则3面张
5-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失5有余 {7m}  嵌张
5-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失5有余 {2m}{5m}{8m} {3m}{6m}  5面张
5-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失5有余 {5m}{9m}  双碰
6-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失6有余 {1m}{4m}{7m}  单纯3面张
6-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失6有余 {3m}{6m}{9m} {2m}  4面张
6-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失6有余 {2m}{3m}  变则2面张
6-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失6有余 {4m}{7m}  单纯両面
6-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失6有余 {6m}{9m} {5m}  变则3面张
6-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{8m}{9m}{9m}{9m} 7缺失6有余 {7m}  嵌张
6-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{9m}{9m}{9m} 8缺失6有余 {5m}{8m} {6m}  变则3面张
6-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m} 9缺失6有余 {1m}{4m}{7m} {9m}  4面张
7-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 1缺失7有余 {6m}{9m} {1m}  变则3面张
7-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 2缺失7有余 {2m}{5m}{8m} {7m}  4面张
7-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 3缺失7有余 {3m}  嵌张
7-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 4缺失7有余 {1m}{4m} {6m}{9m}  4面张
7-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 5缺失7有余 {5m}{8m} {7m}  变则3面张
7-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{7m}{8m}{9m}{9m}{9m} 6缺失7有余 {6m}  嵌张
7-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{9m}{9m}{9m} 8缺失7有余 {1m}{4m}{7m} {8m}  4面张
7-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m} 9缺失7有余 {6m}{9m} {8m}  变则3面张
8-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 1缺失8有余 {1m}{8m}  双碰
8-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 2缺失8有余 {2m}{5m}{8m} {7m}  4面张
8-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 3缺失8有余 {3m}  嵌张
8-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 4缺失8有余 {1m}{4m} {8m}  变则3面张
8-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 5缺失8有余 {5m}{8m} {7m}  变则3面张
8-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{8m}{9m}{9m}{9m} 6缺失8有余 {6m}  嵌张
8-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{8m}{9m}{9m}{9m} 7缺失8有余 {1m}{4m}{7m} {8m}  4面张
8-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m} 9缺失8有余 {7m} {8m} {9m}  变则3面张
9-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 1缺失9有余 {1m}{4m}{7m}  单纯3面张
9-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 2缺失9有余 {3m}{6m} {2m}  变则3面张
9-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 3缺失9有余 {2m}{3m}  变则2面张
9-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 4缺失9有余 {4m}{7m}  单纯両面
9-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 5缺失9有余 {5m}{6m}  变则2面张
9-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}{9m} 6缺失9有余 {2m}{5m} {3m}{6m}  4面张
9-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}{9m} 7缺失9有余 {7m}  边张
9-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}{9m} 8缺失9有余 {8m}  嵌张
9-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 纯正九莲 全部同色牌 9面张