“九蓮寶燈”的版本间的差异
Lietxiasmile(讨论 | 贡献) |
Lietxiasmile(讨论 | 贡献) |
||
第101行: | 第101行: | ||
! !! class="unsortable" |牌姿!!形!! class="unsortable" |听张!!听 | ! !! class="unsortable" |牌姿!!形!! class="unsortable" |听张!!听 | ||
|- | |- | ||
− | |1-2|| style="padding:10px 0px 0px;" |{ | + | |1-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}||{{display none|1b2/}}嵌张 |
|- | |- | ||
− | |1-3|| style="padding:10px 0px 0px;" |{ | + | |1-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1a3/}}边张 |
|- | |- | ||
− | |1-4|| style="padding:10px 0px 0px;" |{ | + | |1-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {5m}{8m}||{{display none|4a4758/}}4面张 |
|- | |- | ||
− | |1-5|| style="padding:10px 0px 0px;" |{ | + | |1-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{5m}||{{display none|2c45/}}变则2面张 |
|- | |- | ||
− | |1-6|| style="padding:10px 0px 0px;" |{ | + | |1-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||{{display none|2b36/}}单纯両面 |
|- | |- | ||
− | |1-7|| style="padding:10px 0px 0px;" |{ | + | |1-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||{{display none|2c78/}}变则2面张 |
|- | |- | ||
− | |1-8|| style="padding:10px 0px 0px;" |{ | + | |1-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {8m}||{{display none|3c478/}}变则3面张 |
|- | |- | ||
− | |1-9|| style="padding:10px 0px 0px;" |{ | + | |1-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}||{{display none|3a369/}}单纯3面张 |
|- | |- | ||
− | |2-1|| style="padding:10px 0px 0px;" |{ | + | |2-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m} {2m} {3m}||{{display none|3b123/}}变则3面张 |
|- | |- | ||
− | |2-3|| style="padding:10px 0px 0px;" |{ | + | |2-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4面张 |
|- | |- | ||
− | |2-4|| style="padding:10px 0px 0px;" |{ | + | |2-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||{{display none|1b4/}}嵌张 |
|- | |- | ||
− | |2-5|| style="padding:10px 0px 0px;" |{ | + | |2-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||{{display none|3c253/}}变则3面张 |
|- | |- | ||
− | |2-6|| style="padding:10px 0px 0px;" |{ | + | |2-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {2m}||{{display none|3c692/}}变则3面张 |
|- | |- | ||
− | |2-7|| style="padding:10px 0px 0px;" |{ | + | |2-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}}嵌张 |
|- | |- | ||
− | |2-8|| style="padding:10px 0px 0px;" |{ | + | |2-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||{{display none|4b2583/}}4面张 |
|- | |- | ||
− | |2-9|| style="padding:10px 0px 0px;" |{ | + | |2-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{9m}||{{display none|2a29/}}双碰 |
|- | |- | ||
− | |3-1|| style="padding:10px 0px 0px;" |{ | + | |3-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {2m}||{{display none|3c142/}}变则3面张 |
|- | |- | ||
− | |3-2|| style="padding:10px 0px 0px;" |{ | + | |3-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4面张 |
|- | |- | ||
− | |3-4|| style="padding:10px 0px 0px;" |{ | + | |3-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||{{display none|1b4/}}嵌张 |
|- | |- | ||
− | |3-5|| style="padding:10px 0px 0px;" |{ | + | |3-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||{{display none|3c253/}}变则3面张 |
|- | |- | ||
− | |3-6|| style="padding:10px 0px 0px;" |{ | + | |3-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||{{display none|4a1469/}}4面张 |
|- | |- | ||
− | |3-7|| style="padding:10px 0px 0px;" |{ | + | |3-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}}嵌张 |
|- | |- | ||
− | |3-8|| style="padding:10px 0px 0px;" |{ | + | |3-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||{{display none|4b2583/}}4面张 |
|- | |- | ||
− | |3-9|| style="padding:10px 0px 0px;" |{ | + | |3-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {9m}||{{display none|3c149/}}变则3面张 |
|- | |- | ||
− | |4-1|| style="padding:10px 0px 0px;" |{ | + | |4-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {1m}||{{display none|4b3691/}}4面张 |
|- | |- | ||
− | |4-2|| style="padding:10px 0px 0px;" |{ | + | |4-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {4m}||{{display none|3c254/}}变则3面张 |
|- | |- | ||
− | |4-3|| style="padding:10px 0px 0px;" |{ | + | |4-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}}嵌张 |
|- | |- | ||
− | |4-5|| style="padding:10px 0px 0px;" |{ | + | |4-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||{{display none|3c145/}}变则3面张 |
|- | |- | ||
− | |4-6|| style="padding:10px 0px 0px;" |{ | + | |4-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||{{display none|2b36/}}单纯両面 |
|- | |- | ||
− | |4-7|| style="padding:10px 0px 0px;" |{ | + | |4-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||{{display none|2c78/}}变则2面张 |
|- | |- | ||
− | |4-8|| style="padding:10px 0px 0px;" |{ | + | |4-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4面张 |
|- | |- | ||
− | |4-9|| style="padding:10px 0px 0px;" |{ | + | |4-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}|| style="white-space:nowrap;" |{{display none|3a369/}}单纯3面张 |
|- | |- | ||
− | |5-1|| style="padding:10px 0px 0px;" |{ | + | |5-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{5m}||{{display none|2a15/}}双碰 |
|- | |- | ||
− | | style="white-space:nowrap;" |5-2|| style="padding:10px 0px 0px; white-space:nowrap;" |{ | + | | style="white-space:nowrap;" |5-2|| style="padding:10px 0px 0px; white-space:nowrap;" |{1m}{1m}{1m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="white-space:nowrap;" |2缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px; white-space:nowrap;" |{2m}{5m}{8m} {4m}{7m}||{{display none|5a25847/}}5面张 |
|- | |- | ||
− | |5-3|| style="padding:10px 0px 0px;" |{ | + | |5-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}}嵌张 |
|- | |- | ||
− | |5-4|| style="padding:10px 0px 0px;" |{ | + | |5-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||{{display none|3c145/}}变则3面张 |
|- | |- | ||
− | |5-6|| style="padding:10px 0px 0px;" |{ | + | |5-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||{{display none|3c695/}}变则3面张 |
|- | |- | ||
− | |5-7|| style="padding:10px 0px 0px;" |{ | + | |5-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}}嵌张 |
|- | |- | ||
− | |5-8|| style="padding:10px 0px 0px;" |{ | + | |5-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px;" |{2m}{5m}{8m} {3m}{6m}||{{display none|5a25836/}}5面张 |
|- | |- | ||
− | |5-9|| style="padding:10px 0px 0px;" |{ | + | |5-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{9m}||{{display none|2a59/}}双碰 |
|- | |- | ||
− | |6-1|| style="padding:10px 0px 0px;" |{ | + | |6-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||{{display none|3a147/}}单纯3面张 |
|- | |- | ||
− | |6-2|| style="padding:10px 0px 0px;" |{ | + | |6-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4面张 |
|- | |- | ||
− | |6-3|| style="padding:10px 0px 0px;" |{ | + | |6-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||{{display none|2c23/}}变则2面张 |
|- | |- | ||
− | |6-4|| style="padding:10px 0px 0px;" |{ | + | |6-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||{{display none|2b47/}}单纯両面 |
|- | |- | ||
− | |6-5|| style="padding:10px 0px 0px;" |{ | + | |6-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||{{display none|3c695/}}变则3面张 |
|- | |- | ||
− | |6-7|| style="padding:10px 0px 0px;" |{ | + | |6-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{8m}{9m}{9m}{9m}||7缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}}嵌张 |
|- | |- | ||
− | |6-8|| style="padding:10px 0px 0px;" |{ | + | |6-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{9m}{9m}{9m}||8缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {6m}||{{display none|3c586/}}变则3面张 |
|- | |- | ||
− | |6-9|| style="padding:10px 0px 0px;" |{ | + | |6-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}||9缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {9m}||{{display none|4b1479/}}4面张 |
|- | |- | ||
− | |7-1|| style="padding:10px 0px 0px;" |{ | + | |7-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||1缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {1m}||{{display none|3c691/}}变则3面张 |
|- | |- | ||
− | |7-2|| style="padding:10px 0px 0px;" |{ | + | |7-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||2缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||{{display none|4b2587/}}4面张 |
|- | |- | ||
− | |7-3|| style="padding:10px 0px 0px;" |{ | + | |7-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||3缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}}嵌张 |
|- | |- | ||
− | |7-4|| style="padding:10px 0px 0px;" |{ | + | |7-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||4缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||{{display none|4a1469/}}4面张 |
|- | |- | ||
− | |7-5|| style="padding:10px 0px 0px;" |{ | + | |7-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||5缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||{{display none|3c587/}}变则3面张 |
|- | |- | ||
− | |7-6|| style="padding:10px 0px 0px;" |{ | + | |7-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{7m}{8m}{9m}{9m}{9m}||6缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||{{display none|1b6/}}嵌张 |
|- | |- | ||
− | |7-8|| style="padding:10px 0px 0px;" |{ | + | |7-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{9m}{9m}{9m}||8缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4面张 |
|- | |- | ||
− | |7-9|| style="padding:10px 0px 0px;" |{ | + | |7-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}||9缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {8m}||{{display none|3c698/}}变则3面张 |
|- | |- | ||
− | |8-1|| style="padding:10px 0px 0px;" |{ | + | |8-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||1缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{8m}||{{display none|2a18/}}双碰 |
|- | |- | ||
− | |8-2|| style="padding:10px 0px 0px;" |{ | + | |8-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||2缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||{{display none|4b2587/}}4面张 |
|- | |- | ||
− | |8-3|| style="padding:10px 0px 0px;" |{ | + | |8-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||3缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}}嵌张 |
|- | |- | ||
− | |8-4|| style="padding:10px 0px 0px;" |{ | + | |8-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||4缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {8m}||{{display none|3c148/}}变则3面张 |
|- | |- | ||
− | |8-5|| style="padding:10px 0px 0px;" |{ | + | |8-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||5缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||{{display none|3c587/}}变则3面张 |
|- | |- | ||
− | |8-6|| style="padding:10px 0px 0px;" |{ | + | |8-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{8m}{9m}{9m}{9m}||6缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||{{display none|1b6/}}嵌张 |
|- | |- | ||
− | |8-7|| style="padding:10px 0px 0px;" |{ | + | |8-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{8m}{9m}{9m}{9m}||7缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4面张 |
|- | |- | ||
− | |8-9|| style="padding:10px 0px 0px;" |{ | + | |8-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}||9缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m} {8m} {9m}||{{display none|3b789/}}变则3面张 |
|- | |- | ||
− | |9-1|| style="padding:10px 0px 0px;" |{ | + | |9-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||1缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||{{display none|3a147/}}单纯3面张 |
|- | |- | ||
− | |9-2|| style="padding:10px 0px 0px;" |{ | + | |9-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||2缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m} {2m}||{{display none|3c362/}}变则3面张 |
|- | |- | ||
− | |9-3|| style="padding:10px 0px 0px;" |{ | + | |9-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||3缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||{{display none|2c23/}}变则2面张 |
|- | |- | ||
− | |9-4|| style="padding:10px 0px 0px;" |{ | + | |9-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||4缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||{{display none|2b47/}}单纯両面 |
|- | |- | ||
− | |9-5|| style="padding:10px 0px 0px;" |{ | + | |9-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||5缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{6m}||{{display none|2c56/}}变则2面张 |
|- | |- | ||
− | |9-6|| style="padding:10px 0px 0px;" |{ | + | |9-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}{9m}||6缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}{6m}||{{display none|4a2536/}}4面张 |
|- | |- | ||
− | |9-7|| style="padding:10px 0px 0px;" |{ | + | |9-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}{9m}||7缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1a7/}}边张 |
|- | |- | ||
− | |9-8|| style="padding:10px 0px 0px;" |{ | + | |9-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}{9m}||8缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{8m}||{{display none|1b8/}}嵌张 |
|- | |- | ||
− | |9-9|| style="padding:10px 0px 0px;" |{ | + | |9-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="text-align:center;" |纯正九莲|| style="text-align:center;" |全部同色牌||9面张 |
|} | |} |
2019年1月25日 (五) 02:57的版本
九莲宝灯,又称天衣无缝,简称九莲,役的一种,必须门前清,役满。由同一花色的含有1112345678999的和牌。
【例】{1123456788999p}荣和{1p}
概要
- 九莲宝灯不能暗杠,暗杠后不计九莲宝灯。
- 九莲宝灯非常难
纯正九莲宝灯
纯正九莲宝灯,简称纯九,指听牌时,手上是同一花色的1112345678999
【例】{1112345678999p}荣和{3p}
- 纯正九莲宝灯有的规则当作二倍役满
九面听牌的牌理
纯正九莲宝灯的牌理如下所示。
高目一通形
- 的三面听。
单纯形
- 的三面听。
高目一通形(左右反转)
- 的三面听。
以上这三个图,各自把牌分成三部分,是比较简单的分解方法,这三个图已经覆盖了 这些听牌。当然还有其他的分解方法,下面举出一些例子。如下所示,因为分割的地方不同,听牌的牌型显得复杂。这种方法只把牌分成两部分,下面按照顺序,U字形排列,同一行的两个分别是左右反转形。
在1和2之间分割
- 听 。
在8和9之间分割
- 听 。
在2和3之间分割
- 听。
在7和8之间分割
- 听。
在3和4之间分割
- 听 。
在6和7之间分割
- 听 。
在4和5之间分割
- 听 。
在5和6之间分割
- 听 。
这样,各种分割的方法,能把从1到9的听牌都覆盖到。
从数学的角度来看,不只是从1到9,0和10也能和九莲宝灯组成“四面子一雀头”的和牌形式。
73种听牌形式
九莲宝灯的听牌形式在牌理上来说有73种(考虑到万筒索3色,73的3倍一共219种,但这只是色的不同,数字的排列是一样的)。以下提供一览表。
- 凡例
- 最左栏的“A-B”是“A多了一张,而没有B”的意思。
- “形”一栏对应的是“没有B,A多了一张”的意思。
- 默认按照“A-B”的顺序排列、点击“形”一栏的排列按钮,可以按照“B-A”的顺序排列。
- 点击“形”一栏的排列按钮,会按“听B的九莲宝灯”的顺序排列。
- 点击最左栏的分类按钮,会回到默认状态,即“没有A的听牌状态一览”。
- 纯正九宝莲灯用“9-9”表示。
牌姿 形 听张 听 1-2 {1m}{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失1有余 {2m} Template:Display none嵌张 1-3 {1m}{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失1有余 {3m} Template:Display none边张 1-4 {1m}{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失1有余 {4m}{7m} {5m}{8m} Template:Display none4面张 1-5 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失1有余 {4m}{5m} Template:Display none变则2面张 1-6 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失1有余 {3m}{6m} Template:Display none单纯両面 1-7 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失1有余 {7m}{8m} Template:Display none变则2面张 1-8 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失1有余 {4m}{7m} {8m} Template:Display none变则3面张 1-9 {1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失1有余 {3m}{6m}{9m} Template:Display none单纯3面张 2-1 {1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失2有余 {1m} {2m} {3m} Template:Display none变则3面张 2-3 {1m}{1m}{1m}{2m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失2有余 {3m}{6m}{9m} {2m} Template:Display none4面张 2-4 {1m}{1m}{1m}{2m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失2有余 {4m} Template:Display none嵌张 2-5 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失2有余 {2m}{5m} {3m} Template:Display none变则3面张 2-6 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失2有余 {6m}{9m} {2m} Template:Display none变则3面张 2-7 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失2有余 {7m} Template:Display none嵌张 2-8 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失2有余 {2m}{5m}{8m} {3m} Template:Display none4面张 2-9 {1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失2有余 {2m}{9m} Template:Display none双碰 3-1 {1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失3有余 {1m}{4m} {2m} Template:Display none变则3面张 3-2 {1m}{1m}{1m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失3有余 {3m}{6m}{9m} {2m} Template:Display none4面张 3-4 {1m}{1m}{1m}{2m}{3m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失3有余 {4m} Template:Display none嵌张 3-5 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失3有余 {2m}{5m} {3m} Template:Display none变则3面张 3-6 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失3有余 {1m}{4m} {6m}{9m} Template:Display none4面张 3-7 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失3有余 {7m} Template:Display none嵌张 3-8 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失3有余 {2m}{5m}{8m} {3m} Template:Display none4面张 3-9 {1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失3有余 {1m}{4m} {9m} Template:Display none变则3面张 4-1 {1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失4有余 {3m}{6m}{9m} {1m} Template:Display none4面张 4-2 {1m}{1m}{1m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失4有余 {2m}{5m} {4m} Template:Display none变则3面张 4-3 {1m}{1m}{1m}{2m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失4有余 {3m} Template:Display none嵌张 4-5 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失4有余 {1m}{4m} {5m} Template:Display none变则3面张 4-6 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失4有余 {3m}{6m} Template:Display none单纯両面 4-7 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失4有余 {7m}{8m} Template:Display none变则2面张 4-8 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失4有余 {1m}{4m}{7m} {8m} Template:Display none4面张 4-9 {1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失4有余 {3m}{6m}{9m} Template:Display none单纯3面张 5-1 {1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失5有余 {1m}{5m} Template:Display none双碰 5-2 {1m}{1m}{1m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失5有余 {2m}{5m}{8m} {4m}{7m} Template:Display none5面张 5-3 {1m}{1m}{1m}{2m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失5有余 {3m} Template:Display none嵌张 5-4 {1m}{1m}{1m}{2m}{3m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失5有余 {1m}{4m} {5m} Template:Display none变则3面张 5-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{7m}{8m}{9m}{9m}{9m} 6缺失5有余 {6m}{9m} {5m} Template:Display none变则3面张 5-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{8m}{9m}{9m}{9m} 7缺失5有余 {7m} Template:Display none嵌张 5-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{9m}{9m}{9m} 8缺失5有余 {2m}{5m}{8m} {3m}{6m} Template:Display none5面张 5-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m} 9缺失5有余 {5m}{9m} Template:Display none双碰 6-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 1缺失6有余 {1m}{4m}{7m} Template:Display none单纯3面张 6-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 2缺失6有余 {3m}{6m}{9m} {2m} Template:Display none4面张 6-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 3缺失6有余 {2m}{3m} Template:Display none变则2面张 6-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 4缺失6有余 {4m}{7m} Template:Display none单纯両面 6-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{6m}{7m}{8m}{9m}{9m}{9m} 5缺失6有余 {6m}{9m} {5m} Template:Display none变则3面张 6-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{8m}{9m}{9m}{9m} 7缺失6有余 {7m} Template:Display none嵌张 6-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{9m}{9m}{9m} 8缺失6有余 {5m}{8m} {6m} Template:Display none变则3面张 6-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m} 9缺失6有余 {1m}{4m}{7m} {9m} Template:Display none4面张 7-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 1缺失7有余 {6m}{9m} {1m} Template:Display none变则3面张 7-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 2缺失7有余 {2m}{5m}{8m} {7m} Template:Display none4面张 7-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 3缺失7有余 {3m} Template:Display none嵌张 7-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 4缺失7有余 {1m}{4m} {6m}{9m} Template:Display none4面张 7-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{7m}{8m}{9m}{9m}{9m} 5缺失7有余 {5m}{8m} {7m} Template:Display none变则3面张 7-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{7m}{8m}{9m}{9m}{9m} 6缺失7有余 {6m} Template:Display none嵌张 7-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{9m}{9m}{9m} 8缺失7有余 {1m}{4m}{7m} {8m} Template:Display none4面张 7-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m} 9缺失7有余 {6m}{9m} {8m} Template:Display none变则3面张 8-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 1缺失8有余 {1m}{8m} Template:Display none双碰 8-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 2缺失8有余 {2m}{5m}{8m} {7m} Template:Display none4面张 8-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 3缺失8有余 {3m} Template:Display none嵌张 8-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 4缺失8有余 {1m}{4m} {8m} Template:Display none变则3面张 8-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{8m}{9m}{9m}{9m} 5缺失8有余 {5m}{8m} {7m} Template:Display none变则3面张 8-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{8m}{9m}{9m}{9m} 6缺失8有余 {6m} Template:Display none嵌张 8-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{8m}{9m}{9m}{9m} 7缺失8有余 {1m}{4m}{7m} {8m} Template:Display none4面张 8-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m} 9缺失8有余 {7m} {8m} {9m} Template:Display none变则3面张 9-1 {1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 1缺失9有余 {1m}{4m}{7m} Template:Display none单纯3面张 9-2 {1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 2缺失9有余 {3m}{6m} {2m} Template:Display none变则3面张 9-3 {1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 3缺失9有余 {2m}{3m} Template:Display none变则2面张 9-4 {1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 4缺失9有余 {4m}{7m} Template:Display none单纯両面 9-5 {1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}{9m} 5缺失9有余 {5m}{6m} Template:Display none变则2面张 9-6 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}{9m} 6缺失9有余 {2m}{5m} {3m}{6m} Template:Display none4面张 9-7 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}{9m} 7缺失9有余 {7m} Template:Display none边张 9-8 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}{9m} 8缺失9有余 {8m} Template:Display none嵌张 9-9 {1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m} 纯正九莲 全部同色牌 9面张