“九蓮寶燈”的版本间的差异

来自最完整的日本麻將中文維基百科
跳转至: 导航搜索
73种听牌形式
 
(未显示同一用户的6个中间版本)
第1行: 第1行:
 
'''九蓮寶燈''',又称'''天衣無縫''',簡稱'''九蓮''',役的一種,必须[[门前清]],役滿。由同一花色的含有1112345678999的和牌。
 
'''九蓮寶燈''',又称'''天衣無縫''',簡稱'''九蓮''',役的一種,必须[[门前清]],役滿。由同一花色的含有1112345678999的和牌。
  
 【例】{1123456788999p} 荣和{1p}
+
 【例】[[File:1p.png|27x39px|alt=1p]][[File:1p.png|27x39px|alt=1p]][[File:2p.png|27x39px|alt=2p]][[File:3p.png|27x39px|alt=3p]][[File:4p.png|27x39px|alt=4p]][[File:5p.png|27x39px|alt=5p]][[File:6p.png|27x39px|alt=6p]][[File:7p.png|27x39px|alt=7p]][[File:8p.png|27x39px|alt=8p]][[File:8p.png|27x39px|alt=8p]][[File:9p.png|27x39px|alt=9p]][[File:9p.png|27x39px|alt=9p]][[File:9p.png|27x39px|alt=9p]] 荣和[[File:1p.png|27x39px|alt=1p]]
 
== 概要 ==
 
== 概要 ==
 
* 九蓮寶燈不能暗杠,暗杠后不计九蓮寶燈。
 
* 九蓮寶燈不能暗杠,暗杠后不计九蓮寶燈。
第9行: 第9行:
 
'''纯正九蓮寶燈''',簡稱'''纯九''',指听牌时,手上是同一花色的1112345678999
 
'''纯正九蓮寶燈''',簡稱'''纯九''',指听牌时,手上是同一花色的1112345678999
  
 【例】{1112345678999p} 荣和{3p}
+
 【例】[[File:1p.png|27x39px|alt=1p]][[File:1p.png|27x39px|alt=1p]][[File:1p.png|27x39px|alt=1p]][[File:2p.png|27x39px|alt=2p]][[File:3p.png|27x39px|alt=3p]][[File:4p.png|27x39px|alt=4p]][[File:5p.png|27x39px|alt=5p]][[File:6p.png|27x39px|alt=6p]][[File:7p.png|27x39px|alt=7p]][[File:8p.png|27x39px|alt=8p]][[File:9p.png|27x39px|alt=9p]][[File:9p.png|27x39px|alt=9p]][[File:9p.png|27x39px|alt=9p]] 荣和[[File:3p.png|27x39px|alt=3p]]
  
 
* 纯正九蓮寶燈有的规则当作二倍役满
 
* 纯正九蓮寶燈有的规则当作二倍役满
第18行: 第18行:
 
| style="white-space:nowrap; padding-right:30px;" |
 
| style="white-space:nowrap; padding-right:30px;" |
 
 高目一通形
 
 高目一通形
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{spaces|2}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{牌画| 九索}}{{spaces|2}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]] [[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]] [[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::{{牌画| 一索}}{{牌画| 四索}}{{牌画| 七索}} 的三面听。
+
::[[File:1s.png|27x39px|alt=1s]][[File:4s.png|27x39px|alt=4s]][[File:7s.png|27x39px|alt=7s]] 的三面听。
 
|-
 
|-
 
| style="white-space:nowrap; padding-right:30px;" |
 
| style="white-space:nowrap; padding-right:30px;" |
 
 单纯形
 
 单纯形
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{spaces|2}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{spaces|2}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]] [[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]] [[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::{{牌画| 二索}}{{牌画| 五索}}{{牌画| 八索}} 的三面听。
+
::[[File:2s.png|27x39px|alt=2s]][[File:5s.png|27x39px|alt=5s]][[File:8s.png|27x39px|alt=8s]] 的三面听。
 
|-
 
|-
 
| style="white-space:nowrap; padding-right:30px;" |
 
| style="white-space:nowrap; padding-right:30px;" |
 
 高目一通形(左右反转)
 
 高目一通形(左右反转)
:{{牌画| 一索}}{{牌画| 一索}}{{spaces|2}}{{牌画| 一索}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{spaces|2}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]] [[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]] [[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::{{牌画| 三索}}{{牌画| 六索}}{{牌画| 九索}} 的三面听。
+
::[[File:3s.png|27x39px|alt=3s]][[File:6s.png|27x39px|alt=6s]][[File:9s.png|27x39px|alt=9s]] 的三面听。
 
|}
 
|}
 以上这三个图,各自把牌分成三部分,是比较简单的分解方法,这三个图已经覆盖了{{牌画| 一索}}{{牌画| 四索}}{{牌画| 七索}} {{牌画| 二索}}{{牌画| 五索}}{{牌画| 八索}} {{牌画| 三索}}{{牌画| 六索}}{{牌画| 九索}} 这些听牌。当然还有其他的分解方法,下面举出一些例子。如下所示,因为分割的地方不同,听牌的牌型显得复杂。这种方法只把牌分成两部分,下面按照顺序,U字形排列,同一行的两个分别是左右反转形。
+
 以上这三个图,各自把牌分成三部分,是比较简单的分解方法,这三个图已经覆盖了[[File:1s.png|27x39px|alt=1s]][[File:4s.png|27x39px|alt=4s]][[File:7s.png|27x39px|alt=7s]] [[File:2s.png|27x39px|alt=2s]][[File:5s.png|27x39px|alt=5s]][[File:8s.png|27x39px|alt=8s]] [[File:3s.png|27x39px|alt=3s]][[File:6s.png|27x39px|alt=6s]][[File:9s.png|27x39px|alt=9s]] 这些听牌。当然还有其他的分解方法,下面举出一些例子。如下所示,因为分割的地方不同,听牌的牌型显得复杂。这种方法只把牌分成两部分,下面按照顺序,U字形排列,同一行的两个分别是左右反转形。
 
:{| class="wikitable" style="font-size:95%; margin:0px;"
 
:{| class="wikitable" style="font-size:95%; margin:0px;"
 
| style="white-space:nowrap; padding-right:30px;" |
 
| style="white-space:nowrap; padding-right:30px;" |
 
 在1和2之间分割
 
 在1和2之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{spaces|2}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}{{spaces|2}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]] [[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]] 
  
::听{{牌画| 二索}}{{牌画| 五索}}{{牌画| 八索}} {{牌画| 一索}}{{牌画| 四索}}{{牌画| 七索}}
+
::听[[File:2s.png|27x39px|alt=2s]][[File:5s.png|27x39px|alt=5s]][[File:8s.png|27x39px|alt=8s]] [[File:1s.png|27x39px|alt=1s]][[File:4s.png|27x39px|alt=4s]][[File:7s.png|27x39px|alt=7s]]
 
| style="white-space:nowrap; padding-right:30px;" |
 
| style="white-space:nowrap; padding-right:30px;" |
 
 在8和9之间分割
 
 在8和9之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{spaces|2}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}{{spaces|2}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]] [[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]] 
  
::听{{牌画| 二索}}{{牌画| 五索}}{{牌画| 八索}} {{牌画| 三索}}{{牌画| 六索}}{{牌画| 九索}}
+
::听[[File:2s.png|27x39px|alt=2s]][[File:5s.png|27x39px|alt=5s]][[File:8s.png|27x39px|alt=8s]] [[File:3s.png|27x39px|alt=3s]][[File:6s.png|27x39px|alt=6s]][[File:9s.png|27x39px|alt=9s]]
 
|-
 
|-
 
|
 
|
 
 在2和3之间分割
 
 在2和3之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{牌画| 二索}}{{spaces|2}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]] [[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::听{{牌画| 二索}}{{牌画| 三索}}
+
::听[[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]]
 
|
 
|
 
 在7和8之间分割
 
 在7和8之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{spaces|2}}{{牌画| 八索}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]] [[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::听{{牌画| 七索}}{{牌画| 八索}}
+
::听[[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]]
 
|-
 
|-
 
|
 
|
 
 在3和4之间分割
 
 在3和4之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{牌画| 二索}}{{牌画| 三索}}{{spaces|2}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]] [[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::听{{牌画| 一索}}{{牌画| 四索}} {{牌画| 三索}}{{牌画| 六索}}{{牌画| 九索}}
+
::听[[File:1s.png|27x39px|alt=1s]][[File:4s.png|27x39px|alt=4s]] [[File:3s.png|27x39px|alt=3s]][[File:6s.png|27x39px|alt=6s]][[File:9s.png|27x39px|alt=9s]]
 
|
 
|
 
 在6和7之间分割
 
 在6和7之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{牌画| 六索}}{{spaces|2}}{{牌画| 七索}}{{牌画| 八索}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]] [[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::听{{牌画| 一索}}{{牌画| 四索}}{{牌画| 七索}} {{牌画| 六索}}{{牌画| 九索}}
+
::听[[File:1s.png|27x39px|alt=1s]][[File:4s.png|27x39px|alt=4s]][[File:7s.png|27x39px|alt=7s]] [[File:6s.png|27x39px|alt=6s]][[File:9s.png|27x39px|alt=9s]]
 
|-
 
|-
 
|
 
|
 
 在4和5之间分割
 
 在4和5之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{spaces|2}}{{牌画| 五索}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]] [[File:5s.png|27x39px|alt=5s]][[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::听{{牌画| 五索}}{{牌画| 八索}} {{牌画| 四索}}{{牌画| 七索}}
+
::听[[File:5s.png|27x39px|alt=5s]][[File:8s.png|27x39px|alt=8s]] [[File:4s.png|27x39px|alt=4s]][[File:7s.png|27x39px|alt=7s]]
 
|
 
|
 
 在5和6之间分割
 
 在5和6之间分割
:{{牌画| 一索}}{{牌画| 一索}}{{牌画| 一索}}{{牌画| 二索}}{{牌画| 三索}}{{牌画| 四索}}{{牌画| 五索}}{{spaces|2}}{{牌画| 六索}}{{牌画| 七索}}{{牌画| 八索}}{{牌画| 九索}}{{牌画| 九索}}{{牌画| 九索}}
+
:[[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:1s.png|27x39px|alt=1s]][[File:2s.png|27x39px|alt=2s]][[File:3s.png|27x39px|alt=3s]][[File:4s.png|27x39px|alt=4s]][[File:5s.png|27x39px|alt=5s]] [[File:6s.png|27x39px|alt=6s]][[File:7s.png|27x39px|alt=7s]][[File:8s.png|27x39px|alt=8s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]][[File:9s.png|27x39px|alt=9s]]
  
::听{{牌画| 二索}}{{牌画| 五索}} {{牌画| 三索}}{{牌画| 六索}}
+
::听[[File:2s.png|27x39px|alt=2s]][[File:5s.png|27x39px|alt=5s]] [[File:3s.png|27x39px|alt=3s]][[File:6s.png|27x39px|alt=6s]]
 
|}
 
|}
 
 这样,各种分割的方法,能把从1到9的听牌都覆盖到。<!--
 
 这样,各种分割的方法,能把从1到9的听牌都覆盖到。<!--
第87行: 第87行:
  
 
 从数学的角度来看,不只是从1到9,0和10也能和九莲宝灯组成“四面子一雀头”的和牌形式。
 
 从数学的角度来看,不只是从1到9,0和10也能和九莲宝灯组成“四面子一雀头”的和牌形式。
 
  
 
== 73种听牌形式 ==
 
== 73种听牌形式 ==
 
 九莲宝灯的听牌形式在牌理上来说有73种(考虑到萬筒索3色,73的3倍一共219种,但这只是色的不同,数字的排列是一样的)。以下提供一览表。
 
 九莲宝灯的听牌形式在牌理上来说有73种(考虑到萬筒索3色,73的3倍一共219种,但这只是色的不同,数字的排列是一样的)。以下提供一览表。
:;凡例<span style="font-size:95%;">
+
:;凡例
 
:*最左栏的「A-B」是「A多了一张,而没有B」的意思。
 
:*最左栏的「A-B」是「A多了一张,而没有B」的意思。
 
:*「形」一栏对应的是「没有B,A多了一张」的意思。
 
:*「形」一栏对应的是「没有B,A多了一张」的意思。
第97行: 第96行:
 
:*点击「形」一栏的排列按钮,会按'''「听B的九莲宝灯」'''的顺序排列。
 
:*点击「形」一栏的排列按钮,会按'''「听B的九莲宝灯」'''的顺序排列。
 
:*点击最左栏的分类按钮,会回到默认状态,即「没有A的听牌状态一览」。
 
:*点击最左栏的分类按钮,会回到默认状态,即「没有A的听牌状态一览」。
:*纯正九宝莲灯用「9-9」表示 。</span>
+
:*纯正九宝莲灯用「9-9」表示
 
:{| class="sortable wikitable" style="font-size:95%;"
 
:{| class="sortable wikitable" style="font-size:95%;"
 
! !! class="unsortable" |牌姿!!形!! class="unsortable" |听张!!听
 
! !! class="unsortable" |牌姿!!形!! class="unsortable" |听张!!听
 
|-
 
|-
|1-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}||{{display none|1b2/}} 嵌张
+
|1-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||2缺失1有余|| [[File:2m.png|27x39px|alt=2m]]|| 嵌张
 
|-
 
|-
|1-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1a3/}} 边张
+
|1-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失1有余|| [[File:3m.png|27x39px|alt=3m]]|| 边张
 
|-
 
|-
|1-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {5m}{8m}||{{display none|4a4758/}}4面张
+
|1-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失1有余|| [[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]] [[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]]|| 4面张
 
|-
 
|-
|1-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{5m}||{{display none|2c45/}} 变则2面张
+
|1-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失1有余|| [[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]]|| 变则2面张
 
|-
 
|-
|1-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||{{display none|2b36/}} 单纯両面
+
|1-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失1有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]]|| 单纯両面
 
|-
 
|-
|1-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||{{display none|2c78/}} 变则2面张
+
|1-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失1有余|| [[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]]|| 变则2面张
 
|-
 
|-
|1-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m} {8m}||{{display none|3c478/}} 变则3面张
+
|1-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失1有余|| [[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]] [[File:8m.png|27x39px|alt=8m]]|| 变则3面张
 
|-
 
|-
|1-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失1有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}||{{display none|3a369/}} 单纯3面张
+
|1-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失1有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]]|| 单纯3面张
 
|-
 
|-
|2-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m} {2m} {3m}||{{display none|3b123/}} 变则3面张
+
|2-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失2有余|| [[File:1m.png|27x39px|alt=1m]] [[File:2m.png|27x39px|alt=2m]] [[File:3m.png|27x39px|alt=3m]]|| 变则3面张
 
|-
 
|-
|2-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4面张
+
|2-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失2有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:2m.png|27x39px|alt=2m]]|| 4面张
 
|-
 
|-
|2-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||{{display none|1b4/}} 嵌张
+
|2-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失2有余|| [[File:4m.png|27x39px|alt=4m]]|| 嵌张
 
|-
 
|-
|2-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||{{display none|3c253/}} 变则3面张
+
|2-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失2有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]] [[File:3m.png|27x39px|alt=3m]]|| 变则3面张
 
|-
 
|-
|2-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {2m}||{{display none|3c692/}} 变则3面张
+
|2-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失2有余|| [[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:2m.png|27x39px|alt=2m]]|| 变则3面张
 
|-
 
|-
|2-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|2-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失2有余|| [[File:7m.png|27x39px|alt=7m]]|| 嵌张
 
|-
 
|-
|2-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||{{display none|4b2583/}}4面张
+
|2-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失2有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:3m.png|27x39px|alt=3m]]|| 4面张
 
|-
 
|-
|2-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失2有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{9m}||{{display none|2a29/}} 双&#30896;
+
|2-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失2有余|| [[File:2m.png|27x39px|alt=2m]][[File:9m.png|27x39px|alt=9m]]|| 双&#30896;
 
|-
 
|-
|3-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {2m}||{{display none|3c142/}} 变则3面张
+
|3-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失3有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]] [[File:2m.png|27x39px|alt=2m]]|| 变则3面张
 
|-
 
|-
|3-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4面张
+
|3-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||2缺失3有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:2m.png|27x39px|alt=2m]]|| 4面张
 
|-
 
|-
|3-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}||{{display none|1b4/}} 嵌张
+
|3-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失3有余|| [[File:4m.png|27x39px|alt=4m]]|| 嵌张
 
|-
 
|-
|3-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}||{{display none|3c253/}} 变则3面张
+
|3-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失3有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]] [[File:3m.png|27x39px|alt=3m]]|| 变则3面张
 
|-
 
|-
|3-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||{{display none|4a1469/}}4面张
+
|3-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失3有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]] [[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]]|| 4面张
 
|-
 
|-
|3-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|3-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失3有余|| [[File:7m.png|27x39px|alt=7m]]|| 嵌张
 
|-
 
|-
|3-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {3m}||{{display none|4b2583/}}4面张
+
|3-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失3有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:3m.png|27x39px|alt=3m]]|| 4面张
 
|-
 
|-
|3-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失3有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {9m}||{{display none|3c149/}} 变则3面张
+
|3-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失3有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]] [[File:9m.png|27x39px|alt=9m]]|| 变则3面张
 
|-
 
|-
|4-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {1m}||{{display none|4b3691/}}4面张
+
|4-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失4有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:1m.png|27x39px|alt=1m]]|| 4面张
 
|-
 
|-
|4-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {4m}||{{display none|3c254/}} 变则3面张
+
|4-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||2缺失4有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]] [[File:4m.png|27x39px|alt=4m]]|| 变则3面张
 
|-
 
|-
|4-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|4-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失4有余|| [[File:3m.png|27x39px|alt=3m]]|| 嵌张
 
|-
 
|-
|4-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||{{display none|3c145/}} 变则3面张
+
|4-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失4有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]] [[File:5m.png|27x39px|alt=5m]]|| 变则3面张
 
|-
 
|-
|4-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}||{{display none|2b36/}} 单纯両面
+
|4-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失4有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]]|| 单纯両面
 
|-
 
|-
|4-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}{8m}||{{display none|2c78/}} 变则2面张
+
|4-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失4有余|| [[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]]|| 变则2面张
 
|-
 
|-
|4-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4面张
+
|4-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失4有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]] [[File:8m.png|27x39px|alt=8m]]|| 4面张
 
|-
 
|-
|4-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失4有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m}|| style="white-space:nowrap;" |{{display none|3a369/}} 单纯3面张
+
|4-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失4有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]]||   单纯3面张
 
|-
 
|-
|5-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{5m}||{{display none|2a15/}} 双&#30896;
+
|5-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失5有余|| [[File:1m.png|27x39px|alt=1m]][[File:5m.png|27x39px|alt=5m]]|| 双&#30896;
 
|-
 
|-
| style="white-space:nowrap;" |5-2|| style="padding:10px 0px 0px; white-space:nowrap;" |{1m}{1m}{1m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="white-space:nowrap;" |2缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px; white-space:nowrap;" |{2m}{5m}{8m} {4m}{7m}||{{display none|5a25847/}}5面张
+
|5-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]|| 2缺失5有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]]|| 5面张
 
|-
 
|-
|5-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|5-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失5有余|| [[File:3m.png|27x39px|alt=3m]]|| 嵌张
 
|-
 
|-
|5-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {5m}||{{display none|3c145/}} 变则3面张
+
|5-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失5有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]] [[File:5m.png|27x39px|alt=5m]]|| 变则3面张
 
|-
 
|-
|5-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{7m}{8m}{9m}{9m}{9m}||6缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||{{display none|3c695/}} 变则3面张
+
|5-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失5有余|| [[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:5m.png|27x39px|alt=5m]]|| 变则3面张
 
|-
 
|-
|5-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{8m}{9m}{9m}{9m}||7缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|5-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失5有余|| [[File:7m.png|27x39px|alt=7m]]|| 嵌张
 
|-
 
|-
|5-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{9m}{9m}{9m}||8缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px; padding-right:0px;" |{2m}{5m}{8m} {3m}{6m}||{{display none|5a25836/}}5面张
+
|5-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失5有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]]|| 5面张
 
|-
 
|-
|5-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{5m}{6m}{7m}{8m}{9m}{9m}||9缺失5有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{9m}||{{display none|2a59/}} 双&#30896;
+
|5-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失5有余|| [[File:5m.png|27x39px|alt=5m]][[File:9m.png|27x39px|alt=9m]]|| 双&#30896;
 
|-
 
|-
|6-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||1缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||{{display none|3a147/}} 单纯3面张
+
|6-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失6有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]]|| 单纯3面张
 
|-
 
|-
|6-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||2缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m}{9m} {2m}||{{display none|4b3692/}}4面张
+
|6-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||2缺失6有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:2m.png|27x39px|alt=2m]]|| 4面张
 
|-
 
|-
|6-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||3缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||{{display none|2c23/}} 变则2面张
+
|6-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失6有余|| [[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]]|| 变则2面张
 
|-
 
|-
|6-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||4缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||{{display none|2b47/}} 单纯両面
+
|6-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失6有余|| [[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]]|| 单纯両面
 
|-
 
|-
|6-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{6m}{7m}{8m}{9m}{9m}{9m}||5缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {5m}||{{display none|3c695/}} 变则3面张
+
|6-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失6有余|| [[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:5m.png|27x39px|alt=5m]]|| 变则3面张
 
|-
 
|-
|6-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{8m}{9m}{9m}{9m}||7缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1b7/}} 嵌张
+
|6-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失6有余|| [[File:7m.png|27x39px|alt=7m]]|| 嵌张
 
|-
 
|-
|6-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{9m}{9m}{9m}||8缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {6m}||{{display none|3c586/}} 变则3面张
+
|6-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失6有余|| [[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:6m.png|27x39px|alt=6m]]|| 变则3面张
 
|-
 
|-
|6-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{6m}{7m}{8m}{9m}{9m}||9缺失6有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {9m}||{{display none|4b1479/}}4面张
+
|6-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失6有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]] [[File:9m.png|27x39px|alt=9m]]|| 4面张
 
|-
 
|-
|7-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||1缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {1m}||{{display none|3c691/}} 变则3面张
+
|7-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失7有余|| [[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:1m.png|27x39px|alt=1m]]|| 变则3面张
 
|-
 
|-
|7-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||2缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||{{display none|4b2587/}}4面张
+
|7-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||2缺失7有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:7m.png|27x39px|alt=7m]]|| 4面张
 
|-
 
|-
|7-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||3缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|7-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失7有余|| [[File:3m.png|27x39px|alt=3m]]|| 嵌张
 
|-
 
|-
|7-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||4缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {6m}{9m}||{{display none|4a1469/}}4面张
+
|7-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失7有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]] [[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]]|| 4面张
 
|-
 
|-
|7-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{7m}{8m}{9m}{9m}{9m}||5缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||{{display none|3c587/}} 变则3面张
+
|7-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失7有余|| [[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:7m.png|27x39px|alt=7m]]|| 变则3面张
 
|-
 
|-
|7-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{7m}{8m}{9m}{9m}{9m}||6缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||{{display none|1b6/}} 嵌张
+
|7-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失7有余|| [[File:6m.png|27x39px|alt=6m]]|| 嵌张
 
|-
 
|-
|7-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{9m}{9m}{9m}||8缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4面张
+
|7-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失7有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]] [[File:8m.png|27x39px|alt=8m]]|| 4面张
 
|-
 
|-
|7-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{7m}{8m}{9m}{9m}||9缺失7有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}{9m} {8m}||{{display none|3c698/}} 变则3面张
+
|7-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失7有余|| [[File:6m.png|27x39px|alt=6m]][[File:9m.png|27x39px|alt=9m]] [[File:8m.png|27x39px|alt=8m]]|| 变则3面张
 
|-
 
|-
|8-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||1缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{8m}||{{display none|2a18/}} 双&#30896;
+
|8-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失8有余|| [[File:1m.png|27x39px|alt=1m]][[File:8m.png|27x39px|alt=8m]]|| 双&#30896;
 
|-
 
|-
|8-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||2缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m}{8m} {7m}||{{display none|4b2587/}}4面张
+
|8-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||2缺失8有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:7m.png|27x39px|alt=7m]]|| 4面张
 
|-
 
|-
|8-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||3缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}||{{display none|1b3/}} 嵌张
+
|8-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失8有余|| [[File:3m.png|27x39px|alt=3m]]|| 嵌张
 
|-
 
|-
|8-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||4缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m} {8m}||{{display none|3c148/}} 变则3面张
+
|8-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失8有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]] [[File:8m.png|27x39px|alt=8m]]|| 变则3面张
 
|-
 
|-
|8-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{8m}{9m}{9m}{9m}||5缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{8m} {7m}||{{display none|3c587/}} 变则3面张
+
|8-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失8有余|| [[File:5m.png|27x39px|alt=5m]][[File:8m.png|27x39px|alt=8m]] [[File:7m.png|27x39px|alt=7m]]|| 变则3面张
 
|-
 
|-
|8-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{8m}{9m}{9m}{9m}||6缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{6m}||{{display none|1b6/}} 嵌张
+
|8-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失8有余|| [[File:6m.png|27x39px|alt=6m]]|| 嵌张
 
|-
 
|-
|8-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{8m}{9m}{9m}{9m}||7缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m} {8m}||{{display none|4b1478/}}4面张
+
|8-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失8有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]] [[File:8m.png|27x39px|alt=8m]]|| 4面张
 
|-
 
|-
|8-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{8m}{9m}{9m}||9缺失8有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m} {8m} {9m}||{{display none|3b789/}} 变则3面张
+
|8-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||9缺失8有余|| [[File:7m.png|27x39px|alt=7m]] [[File:8m.png|27x39px|alt=8m]] [[File:9m.png|27x39px|alt=9m]]|| 变则3面张
 
|-
 
|-
|9-1|| style="padding:10px 0px 0px;" |{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||1缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{1m}{4m}{7m}||{{display none|3a147/}} 单纯3面张
+
|9-1|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||1缺失9有余|| [[File:1m.png|27x39px|alt=1m]][[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]]|| 单纯3面张
 
|-
 
|-
|9-2|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||2缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{3m}{6m} {2m}||{{display none|3c362/}} 变则3面张
+
|9-2|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||2缺失9有余|| [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]] [[File:2m.png|27x39px|alt=2m]]|| 变则3面张
 
|-
 
|-
|9-3|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||3缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{3m}||{{display none|2c23/}} 变则2面张
+
|9-3|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||3缺失9有余|| [[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]]|| 变则2面张
 
|-
 
|-
|9-4|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||4缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{4m}{7m}||{{display none|2b47/}} 单纯両面
+
|9-4|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||4缺失9有余|| [[File:4m.png|27x39px|alt=4m]][[File:7m.png|27x39px|alt=7m]]|| 单纯両面
 
|-
 
|-
|9-5|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{6m}{7m}{8m}{9m}{9m}{9m}{9m}||5缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{5m}{6m}||{{display none|2c56/}} 变则2面张
+
|9-5|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||5缺失9有余|| [[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]]|| 变则2面张
 
 
 
|-
 
|-
|9-6|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{7m}{8m}{9m}{9m}{9m}{9m}||6缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{2m}{5m} {3m}{6m}||{{display none|4a2536/}}4面张
+
|9-6|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||6缺失9有余|| [[File:2m.png|27x39px|alt=2m]][[File:5m.png|27x39px|alt=5m]] [[File:3m.png|27x39px|alt=3m]][[File:6m.png|27x39px|alt=6m]]|| 4面张
 
|-
 
|-
|9-7|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{8m}{9m}{9m}{9m}{9m}||7缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{7m}||{{display none|1a7/}} 边张
+
|9-7|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||7缺失9有余|| [[File:7m.png|27x39px|alt=7m]]|| 边张
 
|-
 
|-
|9-8|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{9m}{9m}{9m}{9m}||8缺失9有余|| style="padding-left:0px; padding-bottom:0px; padding-top:10px;" |{8m}||{{display none|1b8/}} 嵌张
+
|9-8|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||8缺失9有余|| [[File:8m.png|27x39px|alt=8m]]|| 嵌张
 
|-
 
|-
|9-9|| style="padding:10px 0px 0px;" |{1m}{1m}{1m}{2m}{3m}{4m}{5m}{6m}{7m}{8m}{9m}{9m}{9m}|| style="text-align:center;" |纯正九莲|| style="text-align:center;" | 全部同色牌||9面张
+
|9-9|| [[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:1m.png|27x39px|alt=1m]][[File:2m.png|27x39px|alt=2m]][[File:3m.png|27x39px|alt=3m]][[File:4m.png|27x39px|alt=4m]][[File:5m.png|27x39px|alt=5m]][[File:6m.png|27x39px|alt=6m]][[File:7m.png|27x39px|alt=7m]][[File:8m.png|27x39px|alt=8m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]][[File:9m.png|27x39px|alt=9m]]||  纯正九莲|| 全部同色牌||9面张
 
|}
 
|}

2019年1月25日 (五) 03:07的最新版本

九莲宝灯,又称天衣无缝,简称九莲,役的一种,必须门前清,役满。由同一花色的含有1112345678999的和牌。

【例】1p1p2p3p4p5p6p7p8p8p9p9p9p荣和1p

概要

  • 九莲宝灯不能暗杠,暗杠后不计九莲宝灯。
  • 九莲宝灯非常难

纯正九莲宝灯

纯正九莲宝灯,简称纯九,指听牌时,手上是同一花色的1112345678999

【例】1p1p1p2p3p4p5p6p7p8p9p9p9p荣和3p

  • 纯正九莲宝灯有的规则当作二倍役满

九面听牌的牌理

纯正九莲宝灯的牌理如下所示。

 高目一通形

1s1s1s 2s3s4s5s6s7s8s9s 9s9s
1s4s7s的三面听。

 单纯形

1s1s1s 2s3s4s5s6s7s8s 9s9s9s
2s5s8s的三面听。

 高目一通形(左右反转)

1s1s 1s2s3s4s5s6s7s8s 9s9s9s
3s6s9s的三面听。

以上这三个图,各自把牌分成三部分,是比较简单的分解方法,这三个图已经覆盖了1s4s7s 2s5s8s 3s6s9s这些听牌。当然还有其他的分解方法,下面举出一些例子。如下所示,因为分割的地方不同,听牌的牌型显得复杂。这种方法只把牌分成两部分,下面按照顺序,U字形排列,同一行的两个分别是左右反转形。

 在1和2之间分割

1s1s1s 2s3s4s5s6s7s8s9s9s9s 
2s5s8s 1s4s7s

 在8和9之间分割

1s1s1s2s3s4s5s6s7s8s 9s9s9s 
2s5s8s 3s6s9s

 在2和3之间分割

1s1s1s2s 3s4s5s6s7s8s9s9s9s
2s3s

 在7和8之间分割

1s1s1s2s3s4s5s6s7s 8s9s9s9s
7s8s

 在3和4之间分割

1s1s1s2s3s 4s5s6s7s8s9s9s9s
1s4s 3s6s9s

 在6和7之间分割

1s1s1s2s3s4s5s6s 7s8s9s9s9s
1s4s7s 6s9s

 在4和5之间分割

1s1s1s2s3s4s 5s6s7s8s9s9s9s
5s8s 4s7s

 在5和6之间分割

1s1s1s2s3s4s5s 6s7s8s9s9s9s
2s5s 3s6s

这样,各种分割的方法,能把从1到9的听牌都覆盖到。

从数学的角度来看,不只是从1到9,0和10也能和九莲宝灯组成“四面子一雀头”的和牌形式。

73种听牌形式

九莲宝灯的听牌形式在牌理上来说有73种(考虑到万筒索3色,73的3倍一共219种,但这只是色的不同,数字的排列是一样的)。以下提供一览表。

凡例
  • 最左栏的“A-B”是“A多了一张,而没有B”的意思。
  • “形”一栏对应的是“没有B,A多了一张”的意思。
  • 默认按照“A-B”的顺序排列、点击“形”一栏的排列按钮,可以按照“B-A”的顺序排列。
  • 点击“形”一栏的排列按钮,会按“听B的九莲宝灯”的顺序排列。
  • 点击最左栏的分类按钮,会回到默认状态,即“没有A的听牌状态一览”。
  • 纯正九宝莲灯用“9-9”表示
牌姿 听张
1-2 1m1m1m1m3m4m5m6m7m8m9m9m9m 2缺失1有余 2m 嵌张
1-3 1m1m1m1m2m4m5m6m7m8m9m9m9m 3缺失1有余 3m 边张
1-4 1m1m1m1m2m3m5m6m7m8m9m9m9m 4缺失1有余 4m7m 5m8m 4面张
1-5 1m1m1m1m2m3m4m6m7m8m9m9m9m 5缺失1有余 4m5m 变则2面张
1-6 1m1m1m1m2m3m4m5m7m8m9m9m9m 6缺失1有余 3m6m 单纯両面
1-7 1m1m1m1m2m3m4m5m6m8m9m9m9m 7缺失1有余 7m8m 变则2面张
1-8 1m1m1m1m2m3m4m5m6m7m9m9m9m 8缺失1有余 4m7m 8m 变则3面张
1-9 1m1m1m1m2m3m4m5m6m7m8m9m9m 9缺失1有余 3m6m9m 单纯3面张
2-1 1m1m2m2m3m4m5m6m7m8m9m9m9m 1缺失2有余 1m 2m 3m 变则3面张
2-3 1m1m1m2m2m4m5m6m7m8m9m9m9m 3缺失2有余 3m6m9m 2m 4面张
2-4 1m1m1m2m2m3m5m6m7m8m9m9m9m 4缺失2有余 4m 嵌张
2-5 1m1m1m2m2m3m4m6m7m8m9m9m9m 5缺失2有余 2m5m 3m 变则3面张
2-6 1m1m1m2m2m3m4m5m7m8m9m9m9m 6缺失2有余 6m9m 2m 变则3面张
2-7 1m1m1m2m2m3m4m5m6m8m9m9m9m 7缺失2有余 7m 嵌张
2-8 1m1m1m2m2m3m4m5m6m7m9m9m9m 8缺失2有余 2m5m8m 3m 4面张
2-9 1m1m1m2m2m3m4m5m6m7m8m9m9m 9缺失2有余 2m9m 双碰
3-1 1m1m2m3m3m4m5m6m7m8m9m9m9m 1缺失3有余 1m4m 2m 变则3面张
3-2 1m1m1m3m3m4m5m6m7m8m9m9m9m 2缺失3有余 3m6m9m 2m 4面张
3-4 1m1m1m2m3m3m5m6m7m8m9m9m9m 4缺失3有余 4m 嵌张
3-5 1m1m1m2m3m3m4m6m7m8m9m9m9m 5缺失3有余 2m5m 3m 变则3面张
3-6 1m1m1m2m3m3m4m5m7m8m9m9m9m 6缺失3有余 1m4m 6m9m 4面张
3-7 1m1m1m2m3m3m4m5m6m8m9m9m9m 7缺失3有余 7m 嵌张
3-8 1m1m1m2m3m3m4m5m6m7m9m9m9m 8缺失3有余 2m5m8m 3m 4面张
3-9 1m1m1m2m3m3m4m5m6m7m8m9m9m 9缺失3有余 1m4m 9m 变则3面张
4-1 1m1m2m3m4m4m5m6m7m8m9m9m9m 1缺失4有余 3m6m9m 1m 4面张
4-2 1m1m1m3m4m4m5m6m7m8m9m9m9m 2缺失4有余 2m5m 4m 变则3面张
4-3 1m1m1m2m4m4m5m6m7m8m9m9m9m 3缺失4有余 3m 嵌张
4-5 1m1m1m2m3m4m4m6m7m8m9m9m9m 5缺失4有余 1m4m 5m 变则3面张
4-6 1m1m1m2m3m4m4m5m7m8m9m9m9m 6缺失4有余 3m6m 单纯両面
4-7 1m1m1m2m3m4m4m5m6m8m9m9m9m 7缺失4有余 7m8m 变则2面张
4-8 1m1m1m2m3m4m4m5m6m7m9m9m9m 8缺失4有余 1m4m7m 8m 4面张
4-9 1m1m1m2m3m4m4m5m6m7m8m9m9m 9缺失4有余 3m6m9m 单纯3面张
5-1 1m1m2m3m4m5m5m6m7m8m9m9m9m 1缺失5有余 1m5m 双碰
5-2 1m1m1m3m4m5m5m6m7m8m9m9m9m 2缺失5有余 2m5m8m 4m7m 5面张
5-3 1m1m1m2m4m5m5m6m7m8m9m9m9m 3缺失5有余 3m 嵌张
5-4 1m1m1m2m3m5m5m6m7m8m9m9m9m 4缺失5有余 1m4m 5m 变则3面张
5-6 1m1m1m2m3m4m5m5m7m8m9m9m9m 6缺失5有余 6m9m 5m 变则3面张
5-7 1m1m1m2m3m4m5m5m6m8m9m9m9m 7缺失5有余 7m 嵌张
5-8 1m1m1m2m3m4m5m5m6m7m9m9m9m 8缺失5有余 2m5m8m 3m6m 5面张
5-9 1m1m1m2m3m4m5m5m6m7m8m9m9m 9缺失5有余 5m9m 双碰
6-1 1m1m2m3m4m5m6m6m7m8m9m9m9m 1缺失6有余 1m4m7m 单纯3面张
6-2 1m1m1m3m4m5m6m6m7m8m9m9m9m 2缺失6有余 3m6m9m 2m 4面张
6-3 1m1m1m2m4m5m6m6m7m8m9m9m9m 3缺失6有余 2m3m 变则2面张
6-4 1m1m1m2m3m5m6m6m7m8m9m9m9m 4缺失6有余 4m7m 单纯両面
6-5 1m1m1m2m3m4m6m6m7m8m9m9m9m 5缺失6有余 6m9m 5m 变则3面张
6-7 1m1m1m2m3m4m5m6m6m8m9m9m9m 7缺失6有余 7m 嵌张
6-8 1m1m1m2m3m4m5m6m6m7m9m9m9m 8缺失6有余 5m8m 6m 变则3面张
6-9 1m1m1m2m3m4m5m6m6m7m8m9m9m 9缺失6有余 1m4m7m 9m 4面张
7-1 1m1m2m3m4m5m6m7m7m8m9m9m9m 1缺失7有余 6m9m 1m 变则3面张
7-2 1m1m1m3m4m5m6m7m7m8m9m9m9m 2缺失7有余 2m5m8m 7m 4面张
7-3 1m1m1m2m4m5m6m7m7m8m9m9m9m 3缺失7有余 3m 嵌张
7-4 1m1m1m2m3m5m6m7m7m8m9m9m9m 4缺失7有余 1m4m 6m9m 4面张
7-5 1m1m1m2m3m4m6m7m7m8m9m9m9m 5缺失7有余 5m8m 7m 变则3面张
7-6 1m1m1m2m3m4m5m7m7m8m9m9m9m 6缺失7有余 6m 嵌张
7-8 1m1m1m2m3m4m5m6m7m7m9m9m9m 8缺失7有余 1m4m7m 8m 4面张
7-9 1m1m1m2m3m4m5m6m7m7m8m9m9m 9缺失7有余 6m9m 8m 变则3面张
8-1 1m1m2m3m4m5m6m7m8m8m9m9m9m 1缺失8有余 1m8m 双碰
8-2 1m1m1m3m4m5m6m7m8m8m9m9m9m 2缺失8有余 2m5m8m 7m 4面张
8-3 1m1m1m2m4m5m6m7m8m8m9m9m9m 3缺失8有余 3m 嵌张
8-4 1m1m1m2m3m5m6m7m8m8m9m9m9m 4缺失8有余 1m4m 8m 变则3面张
8-5 1m1m1m2m3m4m6m7m8m8m9m9m9m 5缺失8有余 5m8m 7m 变则3面张
8-6 1m1m1m2m3m4m5m7m8m8m9m9m9m 6缺失8有余 6m 嵌张
8-7 1m1m1m2m3m4m5m6m8m8m9m9m9m 7缺失8有余 1m4m7m 8m 4面张
8-9 1m1m1m2m3m4m5m6m7m8m8m9m9m 9缺失8有余 7m 8m 9m 变则3面张
9-1 1m1m2m3m4m5m6m7m8m9m9m9m9m 1缺失9有余 1m4m7m 单纯3面张
9-2 1m1m1m3m4m5m6m7m8m9m9m9m9m 2缺失9有余 3m6m 2m 变则3面张
9-3 1m1m1m2m4m5m6m7m8m9m9m9m9m 3缺失9有余 2m3m 变则2面张
9-4 1m1m1m2m3m5m6m7m8m9m9m9m9m 4缺失9有余 4m7m 单纯両面
9-5 1m1m1m2m3m4m6m7m8m9m9m9m9m 5缺失9有余 5m6m 变则2面张
9-6 1m1m1m2m3m4m5m7m8m9m9m9m9m 6缺失9有余 2m5m 3m6m 4面张
9-7 1m1m1m2m3m4m5m6m8m9m9m9m9m 7缺失9有余 7m 边张
9-8 1m1m1m2m3m4m5m6m7m9m9m9m9m 8缺失9有余 8m 嵌张
9-9 1m1m1m2m3m4m5m6m7m8m9m9m9m 纯正九莲 全部同色牌 9面张